Threefold advice: making the jump from geometric group theorist to computer vision specialist

Lucas_Sabalka

by Lucas Sabalka

I began my mathematical career as a research mathematician, but now I work in industry even though my degree is not in an applied area. With so few academic jobs available recently, transitioning to industry is becoming more common for mathematics PhDs. So to help any mathematicians thinking about that transition, let me tell you how I got where I am.

I had always planned on being a professor as I pursued my PhD. That’s what I became: after two postdocs and a decent rate of publication, I got a tenure-track position at a research university. A career in academia has significant pluses, including the promise of tenure and thinking about interesting problems all day. However, through the course of these positions, I gradually realized the impact of two important minuses of a career in academia. One is that, with academic jobs so few and far between, you typically do not get to choose where you live. My wife and I are from Nebraska, and wanted to end up close to family and friends. The second is that research is driven by self-motivation. That’s good for someone like me who is highly self-motivated, but it can also add undue stress: I was easily on-track for tenure, but found myself pushing hard to make a name for myself with little recognition.

The experience that changed my career path from academia to industry was a consultantship. A co-author and good friend of mine, Dr. Josh Brown-Kramer, was working as an applied mathematician at a start-up tech company in my home town called Ocuvera. I have an undergraduate degree in math, computer science, and history, and together with Josh, I had competed in and won a few programming contests back in the day. I had done very little programming in the intervening years, but I had enough knowledge to pick up coding quickly. Josh put in a good word for me, and got me a full-time consulting position one summer. That position turned out to be a good opportunity for the company to see that I was a good fit culturally and could contribute positively to their products, as well as a good opportunity for me to see what working in industry was like. A few months after my consultantship ended, the company extended me a full-time offer. It was a difficult decision to make, but the draw of moving back home and (what was for me) the lower stress of working in industry led my decision. I took the plunge and switched careers: from “mathematician” to “applied mathematician”.

That transition was anxiety-inducing. I had prepared for many years to be in academia. It had the promise of tenure, and it was familiar. Industry was scary: what if my company folded? How would I handle the different stresses? In retrospect, I should have had more confidence in myself. I now trust that I will be able to find another job if my current job were to disappear. The stressors are different, but overall my stress levels have decreased. I have more time for hobbies, including advocacy and volunteerism (I speak with elected officials and thought leaders about climate change and the transition to a clean energy economy).

My job is Computer Vision Specialist. I develop algorithms for computers, equipped with 3-dimensional cameras, to automatically monitor patients in hospital settings. If the algorithms detect risky behavior from the patient that could increase their risk of falling, they automatically alert hospital personnel to determine an appropriate course of action. Falls cost hospitals and patients billions of dollars per year and can result in death. Helping reduce fall risk and introducing automated monitoring should reduce health care costs as well as improve patient outcomes and save lives. It is rewarding to feel like this project could help improve people’s lives.

My dissertation was in geometric group theory, a topic at the intersection of algebra and topology. While my job does not call for geometric group theory or really any graduate-level mathematics, I do use undergraduate-level mathematics concepts extensively, including statistics, probability, calculus, Euclidean geometry, various computer science algorithms, and linear algebra. We use machine-learned algorithms and we also write computer vision algorithms by hand. Consider, for example, taking an array of points in 3-space representing a single camera frame from a video stream of a hospital room, and trying to identify exactly those points that represent a bed. What properties of a bed are important, and how do you quantify that in a way a computer could evaluate? Once you know where the bed is, which points in 3-space represent the patient, and which the nurse? How will you deal with noisy or missing data? I may not be using the tools of my specialization, but I am using the problem-solving skills that I developed while pursuing my degree. My degree is not applied, but having a PhD in mathematics in any subject shows that you’re good at problem solving.

My advice to mathematics PhD students considering industry for work is threefold. First, remember that your degree will mean you are a very good problem solver, and have confidence that there are companies that value your skills. Second, it’s a good idea to get some classes under your belt that could help you in your desired fields: computer programming, statistics, probability, finance, or any classes that could apply in industry. These classes aren’t necessary, but can distinguish you from other candidates and help prepare you for the transition. Third, if possible, I recommend finding an internship in the field you’re looking at. This will give you valuable experience, help you know what to expect, show you whether you’d like that industry job, and will help you on the job market. Even if you don’t take other classes or have an internship, companies provide new employees training for their new roles.

If you are faced with a career change and decide to leave academia, remember: a PhD shows you are a good learner and you have the problem-solving skills necessary to succeed in industry!

Contact: sabalka@gmail.com

Free AAAS Career Webinar

AAAS Career Development Center logo

Webcast: Transitioning into a Non-academic Career
Tuesday, June 2012:00-1:00 p.m. EDTRegister now

This workshop explores the skills and best practices for transitioning from an academic environment to one of many non-academic career paths. It introduces strategies for career planning, emphasizing an ongoing process for professional development throughout your career.

Join us for this FREE webcast!


Presenter: Josh Henkin, PhD – Founder, STEM Career Services, LLC

Josh Henkin
Josh is the founder of STEM Career Services, a career coaching company aimed at helping STEM graduates launch and sustain careers outside of academia. He conducts workshops at conferences, universities and institutes across the country and provides career coaching to STEM graduates at all levels of their careers. Josh sits on the National Postdoctoral Association Board of Directors. He is also an AAAS Science and Technology Policy Fellow Alum, AAAS member, and is an AAAS Career Development Center subject matter expert.

Agenda:

  • Being strategic in your career planning
  • What skills you need for non-academic jobs and how to acquire these skills while still in the lab
  • Networking as a part of life
  • Crafting your “elevator pitch”
  • How to create a master resume (inclusive of all your skills)
  • Creating position-specific resumes
  • Ample time will be provided for Q&A with Josh

Videos available from the IPAM National Meeting of Women in Financial Math

You can find the Videos and PDFs on the IPAM website.

Thursday, April 27, 2017

9:35 – 10:00
Tanya Beder (SBCC Group)

The Here-to-Stay Roles of Big Data and Machine Learning
PDF Presentation

Wistia video thumbnail

10:05 – 10:55
Karyn Williams (Two Sigma Investments)

Panel Discussion on Predictions for FinTech & Asset Management with Darcy Pauken and Anjun Zhou

Wistia video thumbnail

11:05 – 11:55
Monique Miller (Wilshire Funds Management)

Panel Discussion on Predictions for Portfolios and the Role of Robo Advisors with Cleo Chang, Tina Singh, and Jia Ye

Wistia video thumbnail

2:00 – 2:50
Rosemary Macedo (QS Investors)

Panel Discussion on The Outlook for Quantitative Investing with Cristina Polizu, Gita Rao, and Elizabeth Smith

Wistia video thumbnail

3:00 – 3:50
Tanya Beder (SBCC Group)

Panel Discussion on New Directions in Financial Mathematics –Risk/Algorithmic Trading/ETFs and Beyond with Natalia Bandera, Lisa Borland, and Dinah Chowayou

Friday, April 28, 2017

9:30 – 10:30
Xin Guo (University of California, Berkeley (UC Berkeley))

General Research Directions in Financial Mathematics
PDF Presentation

Wistia video thumbnail

11:00 – 11:25
11:30 – 11:55
Alexandra Chronopoulou (University of Illinois at Urbana-Champaign)

Recent Advances in Factional Stochastic Volatility Models
PDF Presentation

Wistia video thumbnail

12:00 – 12:50
Linda Kreitzman (University of California, Berkeley (UC Berkeley))

The Impact of Fintech and Data Science on Financial Institutions: The Need for New Skill sets.
PDF Presentation

2:00 – 2:25
Kim Weston (University of Texas at Austin)

Equilibrium with Transaction Costs
PDF Presentation

Wistia video thumbnail

2:30 – 2:55
Rohini Kumar (Wayne State University)

Portfolio optimization in a short time horizon

Wistia video thumbnail

3:10 – 3:35
Deniz Sezer (University of Calgary)

Illiquidity, Credit risk and Merton’s model
PDF Presentation

Wistia video thumbnail

3:40 – 4:05
Yuchong Zhang (Columbia University)

Optimal Reward and Mean Field Game of Racing
PDF Presentation

Why I attend Mathematical Problems in Industry (MPI) workshops

Hangjie_headshot.png

by Hangjie Ji, Duke University

I have found that it is very easy for graduate students to get immersed in their own filtered and narrowed research area without thinking about how to use their expertise in other applications. During my Ph.D. study in mathematics I was an active participant in several industrial workshops where graduate students have the opportunity to work in teams on real problems. In this post I will share my experiences at these workshops.

First of all, these workshops provide an industrial-like environment quite different from the usual academic setting. In the Mathematical Problems in Industry (MPI) series organized by Duke University, University of Delaware, NJIT and other institutes, engineers and scientists from industry introduce challenges that they face in business and the workshop participants form groups to tackle the problems. The initial proposed problems could be ill-posed in the mathematical sense, and require careful clarification and formulation to build workable models. During the weeklong workshop professors, postdocs, and graduate students work together, and usually spend at least the first two days on resolving the confusions of the problem setup and terminologies by communicating with the industrial participants. Once the mathematical model is established, various methods that we have learnt from our own research can then be applied to the problem, and the group members usually form smaller teams to tackle the problem from different perspectives. While at first it seems a little intimidating to speak up in front of a group of senior professors, observing the way people think and discuss is actually a very good learning experience for me, and junior mathematicians do contribute lots of fresh insights to the problems. At the end of the week, each team would present their results and it always amazes me how much work can be accomplished in a single week. One of my favorite moments of the final presentation is a display of Colemanballs quotes or bloopers that happen during the workshop like “F is so big it has to be zero!”

Hangjie1

The other two modeling camps that I have participated in are designed for graduate student career development in interdisciplinary problem solving skills. At the Graduate Student Mathematical Modeling Camp (GSMMC) at Rensselaer Polytechnic Institute where graduate student teams get together to solve real problems that arise from industrial applications under the guidance of invited faculty mentors. These modeling camps are usually held one week prior to the MPI workshops, and part of the goal is to better prepare the grad students for the coming MPI workshop, as the weeklong collaboration with team members in a friendly and productive environment quickly adjusts us to more challenging projects at MPI. Another workshop that I participated in, the Industrial Mathematical and Statistical Modeling Workshop (IMSM) is sponsored by the Statistical and Applied Mathematical Science Institute (SAMSI) and NC State University and focuses more on data-driven industrial projects. In the IMSM workshop I worked with a group of seven graduate students from different universities on a project proposed by costal engineers from United States Army Corps of Engineers Costal Lab, and our goal was to estimate the underwater bathymetry in environmental flows. Using the measurement data from several sources and statistical learning methods, we successfully incorporated the data to a wave model that leads to reasonable estimates. In addition to the interesting results that we worked out for the projects, I am also really happy with the training that I received during the workshop on technological tools like Git repository and Python, handling unfiltered dirty data with simulations, and perhaps most importantly, scientific communication skills. For instance, learning how to speak with a costal engineer during the IMSM project turned out to be not so easy. Getting exposed to these skills, or at least being aware of the new tools people are using in industry, is very beneficial for PhD students who have interests in pursuing an industrial career after graduation. The projects during these workshops have always been nice talking points in my conversations with industrial people, and I believe that similar experiences could naturally contribute to a sparkling resume for potential employers as it shows interest and passion outside of one’s academic research work.

As a summary, my personal experience at these workshops has been consistently rewarding and enlightening. I have learnt a lot and have explored areas way beyond my expectation. As an extension of the MPI workshop, I worked on a side project in collaboration with Corning Inc. under the 2015 MPI Fellowship, and presented my results at the 2016 MPI workshop and in a research paper. Two years later, I am still in continuous contact with friends that I met during the first few workshops that I attended, and the connections that we built in those weeks were truly incredible and unforgettable. I am really grateful to the organizers and sponsors who made these workshops possible, and would like to encourage my fellow graduate students to grasp opportunities like these to explore the links between applied mathematics and problems of interest to industry, and to learn more about their own interests.

Hangjie2

Photo:  Group work session

For more info:  https://services.math.duke.edu/conferences/mpi2016/

CC BY-NC-ND

Opportunity: NASA High Performance Fast Computing Challenge

NASA_logoFULL NOTICE HERE

Overview (from the site above)

Do you want to help aerospace engineers solve problems faster? Does the phrase “nonlinear partial differential equations used for unsteady computations” excite you? Do you want to try yourself with the complex computational software that NASA scientists use? This might be the challenge for you.

NASA’s Aeronautics Research Mission Directorate (ARMD) is responsible for developing technologies that will enable future aircraft to burn less fuel, generate fewer emissions and make less noise.  Every U.S. aircraft and U.S. air traffic control tower has NASA-developed technology on board. It’s why we like to say, NASA is with you when you fly!

We need to increase the speed of computations on the Pleiades supercomputer, specifically for computational fluid dynamics, by orders of magnitude, and could use your help!

This isn’t a quest for the faint of heart. As a participant, you’ll need to gain access to FUN3D software through an application process with the US Government.  Although this software usually runs on the Pleiades supercomputer, you can download and run it locally after applying HERE.

 

Background

NASA’s Aeronautics Research Mission Directorate (ARMD) is tasked with innovating at the cutting edge of aerospace.  Their work includes Innovation in Commercial Supersonic Aircraft, Ultra-efficient Commercial Vehicles and Transitioning to Low-Carbon Propulsion while also supporting the development of launch vehicles and planetary entry systems.  These strategic thrusts are supported by advanced computational tools, which enable reductions in ground-based and in-flight testing, provide added physical insight, enable superior designs at reduced cost and risk, and open new frontiers in aerospace vehicle design and performance.

The advanced computational tools include the NASA FUN3D software which is used for solving nonlinear partial differential equations, known as Navier-Stokes equations, used for steady and unsteady flow computations including large eddy simulations in computational fluid dynamics (CFD). Despite tremendous progress made in the past few decades, CFD tools are too slow for simulation of complex geometry flows, particularly those involving flow separation and multi-physics (e.g. combustion) applications. To enable high-fidelity CFD for multi-disciplinary analysis and design, the speed of computation must be increased by orders of magnitude.

NASA is seeking proposals for improving the performance of the NASA FUN3D software running on the NASA Pleiades supercomputer.  The desired outcome is any approach that can accelerate calculations by a factor of 10-1000x without any decrease in accuracy and while utilizing the existing hardware platform.

More info HERE.

 

 

A random walk toward a net positive

by Derek Kane, Deka Research and Development  dgkane64@gmail.com

Today, I am investigating whether magnetic resonance imaging can evaluate cell viability as we attempt to grow replacement organs: hearts, lungs, kidneys, etc., for patients who need transplants. I believe the child I was at five would approve. Of course, I also have a two hour meeting this afternoon to read C++ code to ensure that it not only performs its intended task, but also conforms to DEKA’s formatting standards. Even the coolest job, and I have a very cool job, includes drudgery and paperwork.

Avoiding boredom was my earliest career goal. My undergraduate degree was mechanical engineering, and my brother got me a job with him at Itek Optical Systems. Itek made cameras and telescopes, largely for the Department of Defense. The engineering challenges were fascinating, but the analysis and algorithm aspects of the work excited me much more than traditional mechanical engineering. However, my lack of deep mathematical training limited the analyses and algorithm development I could handle. At this job, I also noticed two career paths: one group of older engineers became middle managers whose work looked unbearably dull and who seemed very vulnerable to layoffs. A smaller group of engineers, including my boss, served as technical experts. When a new and innovative solution was required, or when a program stalled because a physical or computational challenge could not be overcome, these experts were consulted. I wanted this job.

I decided I also wanted to attend graduate school in mathematics. The deeper understanding of mathematics would enable me to comprehend and address a wider range of analytic and algorithmic problems. Additionally, a PhD provides gravitas when working with other engineers in industry. An engineer with a bachelor’s degree must have a large volume of high quality and high visibility work, before their opinions are considered seriously outside of the company where they work. While there are a great many fools who have doctorates, when you are sitting around a table with several PhDs, it is handy to have your own so you are part of the club.

To prepare for graduate school, I took one or two undergraduate math classes every semester for two and a half years while working. In the process, I discovered that math was beautiful as well as useful. The University of Michigan accepted me into their graduate program, and I studied algebraic group theory, intending to become a professor after graduation. Graduate school also proved an ideal environment to enjoy my two small children. However, as I approached my defense the academic job market was drying up. I could look forward to a series of one or two year positions before finding a tenure-track job. With two children, this prospect was unattractive, so I decided to return to industry.

My previous experience with optics enabled me to join a laser-based project at Lockheed Martin. This project offered the opportunity to work with inertial systems, and this experience made me attractive to Deka Research & Development. Deka was developing the iBot (an inertially stabilized wheelchair capable of traversing rough terrain, curbs and stairs) and the Segway (an inertially stabilized, two-wheel vehicle).

Dean Kamen, the founder of Deka, feels that we should only be working on jobs that are hard and that positively affect many people. The range of work I get to join is varied and exciting: mobility for people who can’t walk, prosthetics for people who have lost arms, clean water for people who will never get utilities from their governments, hearing improvement, safe delivery of drugs, improved dialysis for people with kidney failure, several projects I cannot talk about, and most recently growing new organs for people in need of transplants.

The range of disciplines this allows me to sample is equally wide ranging: thermodynamics, electro-magnetics, computer modeling of liquids, exotic signal processing, statistics, optics, big data analysis, synthetic biology, human-machine interfaces, colloidal flows, causality, complexity, numerical solution of differential equations, etc. Mathematical training allows me to move from discipline to discipline, because at its core, each of these topics depends upon a quantitative approach to understanding data, modeling relationships, and predicting outcomes. Grad school supplemented this flexibility by demonstrating that hard work and research can overcome difficult technical problems. You should leave grad school feeling that if another human has managed to solve a problem and write it down, then you can read their work and understand it.

Today, it is almost twenty-one years since I defended my thesis. I anticipate another twenty-one years of professional life, although I am aiming for at least forty more years. At the beginning of my career, my primary concerns were staying employed and working on exciting projects. Now, I am becoming concerned with why I do the work I do, and whether this work is a net good for the world.

I left the defense industry seventeen years ago, primarily for the selfish reason that it had become wearing and grating to put up with the intrusiveness of security clearances, and because commercial industry was tackling more interesting technical challenges than defense. It is absolutely true that there are sound moral arguments for working for defense, but I never really thought about the ethical justification of my work. I have been extraordinarily fortunate to land at a company where I am sure that my work is contributing to society.

I am largely comfortable with what I worked on, but I regret not seriously considering the moral implications of my early projects. Young mathematicians have complex lives; they need to support families, establish reputations and orient themselves in a world bursting with opportunities. However, it is also very valuable to develop an understanding of the non-technical world: history, culture and philosophy. This helps us avoid choices that make it hard to sleep as we get older. Older mathematicians have reputations, authority and time to reflect. It is morally incumbent that we provide opportunities for young mathematicians, guide them to interesting work, and protect them from external forces who would inappropriately exploit their talents.

CC BY-NC-ND

Academia trained me for a BIG career

 OLYMPUS DIGITAL CAMERA
by Peter D. Horn

I am honored to share some career advice with the young and mathematically-inclined. When I fit that description, I felt a lack of diversity in the opinions and advice I was hearing from my mentors. This wasn’t their fault, but mine. Classic case of selection bias, as I only sought advice from my professors.  My first recommendation is to connect with many math folks who have walked a variety of paths to get a sense of what is out there (reading the posts on this blog is a great first step!).

When I was finishing up my math major, I felt there was more math for me to learn, and I went on to get a PhD in low-dimensional topology. As a grad student, I was encouraged to pursue a postdoc. By the time I was deep into my postdoc, I had a tenure-track job in my sights. It wasn’t until my third year into a tenure-track position that I evaluated my career choice and realized I would be happier doing something else.

I reached out to a few friends from grad school who went into government and industry, as well as a couple former academics who transferred to tech and finance jobs.  I did a little research to see what was out there, and found “data science” to be a broad enough field to entertain my intellectual curiosities (e.g. machine learning algorithms) while providing plenty of job security (i.e. strong business demand).  Currently, I am a data scientist at the MITRE Corporation, a non-profit company that does R&D for many federal agencies.  I love working at MITRE because I get to define what type of data scientist I want to be.  In my first year, I worked on research projects involving machine learning and agent-based models to drive policy analysis, and I prototyped a web-based simulation tool to explore workforce strategies for the VA.  It’s great to be at a company where the work is challenging and impactful.

While in the transition to industry, I realized that much of my academic training and some of my hobbies positioned me to be an attractive candidate.  As a math major/PhD candidate/professor, I had accrued a ton of experience teaching myself complex, abstract concepts. Employers seek out job candidates who can demonstrate the ability to pick up new things quickly.  Working in help centers/recitations/lectures, I had accrued a ton of experience explaining deep, technical material to non-technical audiences.  Employers like to hire teachers because they can put you in front of customers or use you to mentor young staff.  As a mathematician, you have surely gained similar experience.  Find a way to brag about your superpowers!

You’re going to need programming skills.  In my journey, I was lucky to have learned to code.  In college, I learned a bit of Java in CS 101.  In grad school, the math department hired me by the hour to maintain their website.  I chose to write up my homework in LaTeX.  Frequently, I would need to do some computations in Mathematica, Maple, Matlab, or Sage.  As a postdoc, I got bored one summer and wrote a couple of card games in Objective-C.  For a research paper, I needed to diagonalize some matrices over a non-commutative base ring, and I wrote the code to do this from scratch in Python.  Before I had even heard of data science, I had ten programming/markup languages under my belt, and I put all of them on my resumé to show employers that I am comfortable writing code.  If you don’t have experience programming, I recommend you pick up Python. It’s a good general purpose language.  Pick a project and use Python to attack it (e.g. implement matrix multiplication from scratch).

The last piece of advice I have is to acquire domain knowledge and to network. The biggest hurdle I had in my journey was learning to communicate with potential employers.  I decided to take online courses in data analytics and machine learning, and these courses taught me what people in industry care about, how they talk, and what tools they use.  I also participated in some coding and data science competitions online.  Since I had a noticable lack of business experience, these competitions were something I could point to as proof that I could do data science.  I would also recommend attending meetups in your area. In my experience, meetup people are very friendly and helpful.

Transitioning out of academia was scary, but it has been one of my best decisions.  At first I was worried I wouldn’t be what employers were looking for, but I learned that many employers want to build companies with people from diverse backgrounds. Don’t worry about trying to fit the mold.  Reach out to friends, former classmates, and friends of friends, and you will find all the support you need.